Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Front Cell Infect Microbiol ; 14: 1359766, 2024.
Article En | MEDLINE | ID: mdl-38572321

Virus-induced genomic remodeling and altered gene expression contribute significantly to cancer development. Some oncogenic viruses such as Human papillomavirus (HPV) specifically trigger certain cancers by integrating into the host's DNA, disrupting gene regulation linked to cell growth and migration. The effect can be through direct integration of viral genomes into the host genome or through indirect modulation of host cell pathways/proteins by viral proteins. Viral proteins also disrupt key cellular processes like apoptosis and DNA repair by interacting with host molecules, affecting signaling pathways. These disruptions lead to mutation accumulation and tumorigenesis. This review focuses on recent studies exploring virus-mediated genomic structure, altered gene expression, and epigenetic modifications in tumorigenesis.


Carcinogenesis , Cell Transformation, Neoplastic , Humans , Carcinogenesis/genetics , Viral Proteins , Genomics , Gene Expression
2.
Front Nutr ; 11: 1336057, 2024.
Article En | MEDLINE | ID: mdl-38379549

Modifications of protein post-translation are critical modulatory processes, which alters target protein biological activity,function and/or location, even involved in pathogenesis of some diseases. So far, there are at least 16 types of post-translation modifications identified, particularly through recent mass spectrometry analysis. Among them, succinylation (Ksuc) on protein lysine residues causes a variety of biological changes. Succinylation of proteins contributes to many cellular processes such as proliferation, growth, differentiation, metabolism and even tumorigenesis. Mechanically, Succinylation leads to conformation alteration of chromatin or remodeling. As a result, transcription/expression of target genes is changed accordingly. Recent research indicated that succinylation mainly contributes to metabolism modulations, from gene expression of metabolic enzymes to their activity modulation. In this review, we will conclude roles of succinylation in metabolic regulation of glucose, fat, amino acids and related metabolic disease launched by aberrant succinylation. Our goal is to stimulate extra attention to these still not well researched perhaps important succinylation modification on proteins and cell processes.

3.
RSC Adv ; 12(44): 28463-28472, 2022 Oct 04.
Article En | MEDLINE | ID: mdl-36320538

Two-dimensional MoS2 with a controllable morphology was prepared via a simple one-step hydrothermal method. Citric acid was used as a complexing agent and self-assembly inducer. The morphology of MoS2 changed from clusters to nanosheets, and, eventually, to stacked nanorods. A formation mechanism is proposed for the observed evolution of the morphology. The nanosheet structure presents a relatively large specific surface area, more exposed active sites and greater 1T phase content compared to the other morphologies. The electrochemical performance tests show that the MoS2 nanosheets exhibit excellent electrochemical behavior. Their specific capacitance is 320.5 F g-1, and their capacitance retention is up to 95% after 5000 cycles at 5 mA cm-2. This work provides a feasible approach for changing the morphology of MoS2 for high efficiency electrode materials for supercapacitors.

4.
RSC Adv ; 10(64): 38965-38973, 2020 Oct 21.
Article En | MEDLINE | ID: mdl-35518388

Mercury(ii), which is a well-known toxic species, exists in the industrial waste water in many cases. In the present work, CdTe quantum dots (QDs) are studied as a fluorescence probe for Hg2+ detection. Ag ions are induced to QDs to enlarge their detection concentration range. l-cysteine is employed in the QD-based fluorescence probe to connect QDs with Hg2+. X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy results indicate the formation of zinc blende CdTe QDs with sizes of ∼5 nm and the existence of Ag+ in crystalline CdTe. Photoluminescence (PL) spectra and PL decay spectra were acquired to investigate the emission mechanism of Ag-doped CdTe QDs, revealing multi-emission in QD samples with higher concentrations of Ag+ doping. The highest PL quantum yield of the QD samples was 59.4%. Furthermore, the relationship between the fluorescence intensity and the concentration of Hg2+ has been established. Two linear relationships were obtained for the plot of F/F0 against Hg2+ concentration, enlarging the detection concentration range of Hg2+.

5.
RSC Adv ; 9(40): 22772-22778, 2019 Jul 23.
Article En | MEDLINE | ID: mdl-35514482

A top-down synthetic method was developed for the fabrication of sponge-like Mn3O4 composed of Mn3O4 nanocrystals by decomposition of manganese formate at 200 °C. The samples were characterized in terms of their structural and morphological properties by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) studies. TEM and SEM images showed that the morphology of sponge-like Mn3O4 structures was mostly retained from the morphology of the manganese formate precursor, which was controlled by the solvothermal process. Large sponge-like Mn3O4 structures exhibiting crystallographic symmetry were prepared under solvothermal treatment for a long time. The XRD pattern showed that the Mn3O4 exhibit a tetragonal hausmannite structure. The results of N2 adsorption analysis indicated that the sponge-like Mn3O4 nanostructures possess high surface area. The possible formation mechanism of Mn3O4 nanostructures has been discussed.

6.
Curr Genet ; 64(1): 275-284, 2018 Feb.
Article En | MEDLINE | ID: mdl-28871395

Oxidation tolerance is an important determinant to predict the virulence and biocontrol potential of Beauveria bassiana, a well-known entomopathogenic fungus. As a transcriptional coactivator, multiprotein bridging factor 1 mediates the activity of transcription factor in diverse physiological processes, and its homolog in B. bassiana (BbMBF1) contributes to fungal oxidation tolerance. In this study, the BbMBF1-interactomes under oxidative stress and normal growth condition were deciphered by mass spectrometry integrated with the immunoprecipitation. BbMBF1p factor has a broad interaction with proteins that are involved in various cellular processes, and this interaction is dynamically regulated by oxidative stress. Importantly, a B. bassiana homolog of yeast AP-1-like transcription factor (BbAP-1) was specifically associated with the BbMBF1-interactome under oxidation and significantly contributed to fungal oxidation tolerance. In addition, qPCR analysis revealed that several antioxidant genes are jointly controlled by BbAP-1 and BbMBF1. Conclusively, it is proposed that BbMBF1p protein mediates BbAP-1p factor to transcribe the downstream antioxidant genes in B. bassiana under oxidative stress. This study demonstrates for the first time a proteomic view of the MBF1-interactome in fungi, and presents an initial framework to probe the transcriptional mechanism involved in fungal response to oxidation, which will provide a new strategy to improve the biocontrol efficacy of B. bassiana.


Adaptation, Biological , Beauveria/metabolism , Fungal Proteins/metabolism , Oxidation-Reduction , Oxidative Stress , Protein Interaction Mapping , Transcription Factor AP-1/metabolism , Beauveria/genetics , Beauveria/pathogenicity , Carrier Proteins , Chromatography, Liquid , Gene Expression Regulation, Fungal , Mutation , Protein Binding , Proteomics/methods , Tandem Mass Spectrometry
7.
Environ Microbiol ; 19(10): 4126-4139, 2017 10.
Article En | MEDLINE | ID: mdl-28730600

Alternative splicing (AS) regulates various biological processes in fungi by extending the cellular proteome. However, comprehensive studies investigating AS in entomopathogenic fungi are lacking. Based on transcriptome data obtained via dual RNA-seq, the first overview of AS events was developed for Beauveria bassiana growing in an insect haemocoel. The AS was demonstrated for 556 of 8840 expressed genes, accounting for 5.4% of the total genes in B. bassiana. Intron retention was the most abundant type of AS, accounting for 87.1% of all splicing events and exon skipping events were rare, only accounting for 2.0% of all events. Functional distribution analysis indicated an association between alternatively spliced genes and several physiological processes. Notably, B. bassiana autophagy-related gene 8 (BbATG8), an indispensable gene for autophagy, was spliced at an alternative 5' splice site to generate two transcripts (BbATG8-α and BbATG8-ß). The BbATG8-α transcript was necessary for fungal autophagy and oxidation tolerance, while the BbATG8-ß transcript was not. These two transcripts differentially contributed to the formation of conidia or blastospores as well as fungal virulence. Thus, AS acts as a powerful post-transcriptional regulatory strategy in insect mycopathogens and significantly mediates fungal transcriptional adaption to host niches.


Alternative Splicing/genetics , Autophagy-Related Protein 8 Family/genetics , Beauveria/genetics , Beauveria/pathogenicity , Moths/microbiology , RNA, Fungal/genetics , Acclimatization , Animals , Sequence Analysis, RNA , Spores, Fungal/genetics , Transcriptome/genetics , Virulence/genetics
8.
Environ Microbiol ; 18(11): 4153-4169, 2016 11.
Article En | MEDLINE | ID: mdl-27554994

The gelsolin superfamily includes seven protein members: gelsolin, villin, adseverin, CapG, advillin, supervillin and flightless I. The gelsolin proteins are actin-binding proteins that contain three or six gelsolin-like domains, and they play important roles in remodelling actin dynamics and cellular processes in eukaryotes. The entomopathogenic fungus Beauveria bassiana expresses a unique CapG protein (BbGEL1) that contains three gelsolin-like domains. BbGEL1p is associated with actin during mycelial growth and plays an important role in fungal morphological transitions under both aerobic and submerged conditions. The ΔBbGEL1 mutant displays abnormal spore-producing structures that reduce the conidial and blastospore yields by approximately 70% and 90% respectively. The virulence of the ΔBbGEL1 mutant is notably reduced as indicated by topical and intrahemocoel injection assays. Two comparative proteomics analyses indicated that BbGEL1 has significantly different roles in the development of conidia and blastospores, and the results revealed the potential targets of BbGEL1 in the corresponding developmental processes. Additionally, as an overlapping downstream protein of BbGEL1, the hydrophobin-like protein gene BbHyd3 is required for conidiation but has a negative role in blastospore formation. Our findings indicate that in addition to its function as an actin-interacting protein, BbGEL1 contributes to fungal morphological transitions via broad genetic pathways.


Beauveria/growth & development , Beauveria/metabolism , Fungal Proteins/metabolism , Gelsolin/metabolism , Aerobiosis , Animals , Beauveria/genetics , Beauveria/pathogenicity , Fungal Proteins/genetics , Gelsolin/genetics , Insecta/chemistry , Insecta/microbiology , Proteome/chemistry , Proteome/genetics , Proteome/metabolism , Spores, Fungal/genetics , Spores, Fungal/growth & development , Spores, Fungal/metabolism , Spores, Fungal/pathogenicity , Virulence
...